aboutsummaryrefslogtreecommitdiff
path: root/demo/makeBoundary
blob: 6c52e764ee63aa7e2b1d68c003ab2985c5001968 (plain)
1
../python/makeBoundary
> 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#!/usr/bin/env python3

import matplotlib.pyplot as plt
import numpy as np
import bisect
import ast
import math
import argparse
import sys

#TODO: use YAML/ruamel.yaml for configuration file.
def read_definition(filename):
    ddict = {}
    with open(filename, "r") as f:
        for line in f:
            items = line.split(': ', 1)
            if len(items) == 2:
                ddict[items[0]] = ast.literal_eval(items[1])
    return ddict

def conveyance(numH, n_co, xregion, zregion, zmin, zmax):
    p_i = [] # wetted perimeter
    A_i = [] # area
    r_h = [] # hydraulic radius
    h_i = [] # list of heights
    K_i = [] # conveyance
    Q_i = [] # discharge
    x_sub = [[] for i in range(numH)] # list of x values in subregion
    z_sub = [[] for i in range(numH)] # list of z values in subregion
    for i in range(numH):
        h_i.append(zmin + (i+1)*(zmax-zmin)/numH)
        #print(zregion[zregion < h_i[i]])
        booleanArray = zregion < h_i[i]
        #print(booleanArray[i])
        x_sub[i] += list(xregion[booleanArray])
        z_sub[i] += list(zregion[booleanArray])
        for interval in range(len(xregion)-1):
            if booleanArray[interval+1] != booleanArray[interval]:
                x_extra = xregion[interval] \
                    + (h_i[i] - zregion[interval])\
                    *(xregion[interval+1] - xregion[interval])\
                    /(zregion[interval+1] - zregion[interval])
                bisect.insort(x_sub[i], x_extra) # add intercept value
                ind_x = x_sub[i].index(x_extra)
                z_sub[i].insert(ind_x, h_i[i])   # add height value
        #print(z_sub[i])

        dp = 0
        dA = 0
        eps = 1e-06
        for j in range(len(x_sub[i])-1):
            if (abs(z_sub[i][j+1] - h_i[i]) > eps
                or abs(z_sub[i][j] - h_i[i]) > eps):
                dp += np.hypot(x_sub[i][j+1] - x_sub[i][j],
                               abs(z_sub[i][j+1] - z_sub[i][j]))
            #print(dp)
            # calculate area using trapezium rule
            dA += (h_i[i]
                   - (z_sub[i][j+1] + z_sub[i][j])/2)\
                   *(x_sub[i][j+1] - x_sub[i][j])
            #print('Area =', dA)

        p_i.append(dp)
        A_i.append(dA)

        r_h.append(A_i[i]/p_i[i])  # ratio of area and wetted perimeter
        #print('hydraulic radius =', r_h[i])
        K_i.append(A_i[i]*(1/n_co)*r_h[i]**(2/3)) # conveyance
        Q_i.append(K_i[i]*slope**0.5)             # discharge

    return p_i, A_i, r_h, h_i, K_i, Q_i

def plot_region(xdata, labelx,
                ydata1, labely1,
                ydata2, labely2,
                ydata3, labely3, titlep):
    plt.xlabel(labelx)
    plt.ylabel(labely1)
    plt.title(titlep)
    plt.plot(xdata, ydata1)
    plt.show()

    plt.xlabel(labelx)
    plt.ylabel(labely2)
    plt.title(titlep)
    plt.plot(xdata, ydata2)
    plt.show()

    plt.xlabel(labelx)
    plt.ylabel(labely3)
    plt.title(titlep)
    plt.plot(xdata, ydata3)
    plt.show()

def save_bc(outputfile):
    with open(outputfile, 'w') as f:
        f.write('{:6} {:>2} {:>2} {:>10}\n'.format('#x', 'c', 'q', 'h'))
        for ind_z, (xitem, zitem) in enumerate(zip(xin, zin)):
            panel_x = bisect.bisect(markers, xitem)
            if csa[ind_z] == 0:
                # wall boundary condition
                f.write('{:6.2f} {:>2}\n'.format(xitem, 2))
            elif panel_x == panel[ind_p]:
                # imposed discharge within part-filled panel
                f.write('{:6.2f} {:>2} {:10.6f} {:9.6f}\n'.format(
                    xitem, btype,
                    -csa[ind_z]*panel_target_flow/csa_p[panel_x],
                    h_extra-zitem))
            else:
                # imposed discharge within filled panels
                f.write('{:6.2f} {:>2} {:10.6f} {:9.6f}\n'.format(
                    xitem, btype,
                    -csa[ind_z]*Q_i[panel_x][-1]/csa_p[panel_x],
                    zmax-zitem))

def interp(extra2, max1, min1, max2, min2):
    # use similar triangles to perform linear interpolation
    extra1 = min1 + (max1 - min1)*(extra2 - min2)/(max2 - min2)
    
    return extra1

# read command line argument:
parser = argparse.ArgumentParser(
    description="generate FullSWOF boundary files")
parser.add_argument("location", help="boundary location")
args = parser.parse_args()

if args.location == 'top':
    inputFilename = "boundaryTop.txt"
    outputFilename = "BCTop.txt"
elif args.location == 'bottom':
    inputFilename = "boundaryBottom.txt"
    outputFilename = "BCBottom.txt"
elif args.location == 'left':
    inputFilename = "boundaryLeft.txt"
    outputFilename = "BCLeft.txt"
elif args.location == 'right':
    inputFilename = "boundaryRight.txt"
    outputFilename = "BCRight.txt"

# read boundary definition file:
definition_dict = read_definition(inputFilename)
#for dd in definition_dict:
#    print(definition_dict[dd])
btype       = definition_dict["type"]        # boundary type (1--5)
slope       = abs(definition_dict["slope"])  # slope at top boundary
target_flow = definition_dict["target_flow"] # imposed discharge
plotting    = definition_dict["plotting"]    # enable or disable plotting
printing    = definition_dict["printing"]    # enable or disable printing
n_co        = definition_dict["n_co"]        # Manning's 'n' coefficients
# TODO: use weighted mean 'n' values.  See
# http://help.floodmodeller.com/isis/ISIS/River_Section.htm (Eq. 4)
# Note: weighted mean calculation requires roughness map.
markers     = definition_dict["markers"]     # distances from corner point
panel       = definition_dict["panel"]       # panel fill order
ztol        = definition_dict["ztol"]        # tolerance in overtopping height
numH        = definition_dict["numH"]        # number of height intervals


# print(len(markers))

# with open('./1D_top.txt', "r") as data:
#     xch, ych, zch = np.loadtxt(data, delimiter=' ', unpack=True)

# Fit with polyfit
# m, c = np.polyfit(ych, zch, 1)
# print('gradient =', m, 'intercept =', c)

# read topography:
with open("./topography.txt", "r") as topo:
    xtp, ytp, ztp = np.loadtxt(topo, delimiter=' ', unpack=True)


xmax  = (xtp[0]+xtp[-1])                   # domain extent in x-direction
ymax  = (ytp[0]+ytp[-1])                   # domain extent in y-direction
ncols = int(math.sqrt(len(xtp)*xmax/ymax)) # number of cells in x-direction
nrows = int(len(xtp)/ncols)                # number of cells in y-direction
dX    = xmax/ncols                         # cell size
print('dX =', dX)

#print(ncols, nrows)

# extract slices from height data array.  Note: xyz format uses ncols
# blocks, with nrows lines per block.
if args.location == 'top':
    xin = xtp[nrows-1:len(xtp):nrows]
    yin = 2*ytp[nrows-1:len(xtp):nrows] - ytp[nrows-2:len(xtp):nrows]
    zin = 2*ztp[nrows-1:len(xtp):nrows] - ztp[nrows-2:len(xtp):nrows]
elif args.location == 'bottom':
    xin = xtp[0:len(xtp):nrows]
    yin = 2*ytp[0:len(xtp):nrows] - ytp[1:len(xtp):nrows]
    zin = 2*ztp[0:len(xtp):nrows] - ztp[1:len(xtp):nrows]
elif args.location == 'left':
    xin = 2*xtp[:nrows] - xtp[nrows:2*nrows]
    yin = ytp[:nrows]
    zin = 2*ztp[:nrows] - ztp[nrows:2*nrows]
elif args.location == 'right':
    xin = 2*xtp[nrows*(ncols-1):] - xtp[nrows*(ncols-2):nrows*(ncols-1)]
    yin = ytp[nrows*(ncols-1):]
    zin = 2*ztp[nrows*(ncols-1):] - ztp[nrows*(ncols-2):nrows*(ncols-1)]
    

# print(xin)

num_panels = len(panel) # number of panels across boundary

# convert marker co-ordinates to array indices:
marker_ind = [0]
for i in range(len(markers)):
    marker_ind.append(int(markers[i]/dX))
if args.location == 'left' or args.location == 'right':
    marker_ind.append(nrows)
elif args.location == 'top' or args.location == 'bottom':
    marker_ind.append(ncols)


# print(marker_ind)

xregion = []
zregion = []
zmin = []
for p in range(num_panels):
    # identify regions:
    xregion.append(xin[marker_ind[p]:marker_ind[p+1]])
    zregion.append(zin[marker_ind[p]:marker_ind[p+1]])
    # identify minimum heights within each panel:
    zmin.append(zregion[p].min())

# xregion_west = xin[100:281]
# zregion_west = zin[100:281]

# xregion_east = xin[300:408]
# zregion_east = zin[300:408]

# print(zregion)
# print(xin[12:20])

print('zmin =', zmin)

# channel overtopping height (minimum of left bank and right bank heights):
zmax = min(zregion[panel[0]][0], zregion[panel[0]][-1]) - ztol

print('zmax =', zmax)

#print(h_i)



p_i = [[] for _ in range(num_panels)]
A_i = [[] for _ in range(num_panels)]
r_h = [[] for _ in range(num_panels)]
h_i = [[] for _ in range(num_panels)]
K_i = [[] for _ in range(num_panels)]
Q_i = [[] for _ in range(num_panels)]
for p in range(num_panels):
    if p == panel[0]-1 and zregion[p][-1] < zmax:
        # ensure end node in region to the left of channel is dry:
        xregion[p] = np.append(xregion[p], xin[marker_ind[p]])
        zregion[p] = np.append(zregion[p], zin[marker_ind[p]])
    if p == panel[0]+1 and zregion[p][0] < zmax:
        # ensure start node in region to the right of channel is dry:
        xregion[p] = np.insert(xregion[p], 0, xin[marker_ind[p]-1])
        zregion[p] = np.insert(zregion[p], 0, zin[marker_ind[p]-1])
    if zmax > zmin[p]:
        p_i[p], A_i[p], r_h[p], h_i[p], K_i[p], Q_i[p] = conveyance(
            numH,
            n_co[p],
            xregion[p],
            zregion[p],
            zmin[p],
            zmax)
        if plotting:
            plot_region(
                h_i[p]-zmin[p], 'maximum depth / m',
                r_h[p], 'hydraulic radius / m',
                K_i[p], r'conveyance / $m^3/s$',
                Q_i[p], r'discharge / $m^3/s$',
                'Panel {}'.format(p))
        if printing:
            ratingCurveFileName = 'panel{}_{}.dat'.format(p,args.location)
            with open(ratingCurveFileName, 'w') as f:
                f.write('{:16} {:18} {:12} {:10}\n'.format(
                    '#maximum depth', 'hydraulic radius',
                    'conveyance', 'discharge'))
                f.write('{:16} {:18} {:12} {:10}\n'.format(
                    '#/ m', '/ m', '/ m^3/s', '/ m^3/s'))
                for h in range(numH):
                    f.write('{:7.6f} {:16.6f} {:19.6f} {:11.6f}\n'.format(
                        h_i[p][h]-zmin[p],r_h[p][h],K_i[p][h],Q_i[p][h]))
    else:
        p_i[p], A_i[p], r_h[p], h_i[p], K_i[p], Q_i[p] = [
            [0] * numH for _ in range(6)]

# sort list of discharge lists according to panel fill order:
sortedQ = [Q_i[i] for i in panel]
# create cumulative discharge list:
total_flow = np.cumsum([item[-1] for item in sortedQ])
print('total_flow = ', total_flow)
# target_flow_west = target_flow - Q_i[-1] - Q_i_east[-1]
# calculate velocity: note dependence on hydraulic radius
velocity_channel = Q_i[panel[0]][-1]/A_i[panel[0]][-1]
# velocity_east    = Q_i_east[-1]/A_i_east[-1]

# print(target_flow_west)
# find part-filled panel:
if total_flow[-1] > target_flow:
    ind_p = bisect.bisect(total_flow, target_flow)
else:
    print('Error: imposed discharge is higher than total capacity of panels.')
    sys.exit()

print('index of part-filled panel:', ind_p)

# calculate target flow in part-filled panel:
if ind_p == 0:
    panel_target_flow = target_flow
else:
    panel_target_flow = target_flow - total_flow[ind_p-1]

# find insertion point for target flow value:
ind_q = bisect.bisect(Q_i[panel[ind_p]], panel_target_flow)

print('insertion point =', ind_q)

# find height at target flow by linear interpolation
h_extra = interp(
    panel_target_flow,
    h_i[panel[ind_p]][ind_q],
    h_i[panel[ind_p]][ind_q-1],
    Q_i[panel[ind_p]][ind_q],
    Q_i[panel[ind_p]][ind_q-1])

print('heights:', h_i[panel[ind_p]][ind_q-1], h_extra, h_i[panel[ind_p]][ind_q])

# find area at target flow by linear interpolation
A_extra = interp(
    h_extra,
    A_i[panel[ind_p]][ind_q],
    A_i[panel[ind_p]][ind_q-1],
    h_i[panel[ind_p]][ind_q],
    h_i[panel[ind_p]][ind_q-1])
    
print('hydraulic radii:', r_h[panel[ind_p]][ind_q-1], r_h[panel[ind_p]][ind_q])

velocity_panel    = panel_target_flow/A_extra
print('velocities:', velocity_channel, velocity_panel)

csa = np.zeros(len(xin))             # cross-sectional area of element
csa_p = np.zeros(num_panels)         # cross-sectional area of panel
for i, p in enumerate(panel):
    if i < ind_p:
        # panels are filled
        area_sum = 0
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = max(0, (zmax - zin[m])*dX)
            area_sum += csa[m]
        csa_p[p] = area_sum
    elif i == ind_p:
        # panel is part-filled
        area_sum = 0
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = max(0, (h_extra - zin[m])*dX)
            area_sum += csa[m]
        csa_p[p] = area_sum
    else:
        # panel is empty
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = 0
        csa_p[p] = 0


#print('csa_p[0] = {} csa_p[1] = {}'.format(csa_p[0], csa_p[1]))
#print('A_i_west = {} A_i = {} A_i_east = {}'.format(A_extra, A_i[-1], A_i_east[-1]))


save_bc(outputFilename)