aboutsummaryrefslogtreecommitdiff
path: root/makeBoundary
blob: a0d377317fea49bcefce097e173a8ef23cb25d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3

import matplotlib.pyplot as plt
import numpy as np
import bisect
import ast
import math
import argparse
import sys

#TODO: use YAML/ruamel.yaml for configuration file.
def read_definition(filename):
    ddict = {}
    with open(filename, "r") as f:
        for line in f:
            items = line.split(': ', 1)
            if len(items) == 2:
                ddict[items[0]] = ast.literal_eval(items[1])
    return ddict

def conveyance(numH, n_co, xregion, zregion, zmin, zmax):
    p_i = [] # wetted perimeter
    A_i = [] # area
    r_h = [] # hydraulic radius
    h_i = [] # list of heights
    K_i = [] # conveyance
    Q_i = [] # discharge
    x_sub = [[] for i in range(numH)] # list of x values in subregion
    z_sub = [[] for i in range(numH)] # list of z values in subregion
    for i in range(numH):
        h_i.append(zmin + (i+1)*(zmax-zmin)/numH)
        #print(zregion[zregion < h_i[i]])
        booleanArray = zregion < h_i[i]
        #print(booleanArray[i])
        x_sub[i] += list(xregion[booleanArray])
        z_sub[i] += list(zregion[booleanArray])
        for interval in range(len(xregion)-1):
            if booleanArray[interval+1] != booleanArray[interval]:
                x_extra = xregion[interval] \
                    + (h_i[i] - zregion[interval])\
                    *(xregion[interval+1] - xregion[interval])\
                    /(zregion[interval+1] - zregion[interval])
                bisect.insort(x_sub[i], x_extra) # add intercept value
                ind_x = x_sub[i].index(x_extra)
                z_sub[i].insert(ind_x, h_i[i])   # add height value
        #print(z_sub[i])

        dp = 0
        dA = 0
        eps = 1e-06
        for j in range(len(x_sub[i])-1):
            if (abs(z_sub[i][j+1] - h_i[i]) > eps
                or abs(z_sub[i][j] - h_i[i]) > eps):
                dp += np.hypot(x_sub[i][j+1] - x_sub[i][j],
                               abs(z_sub[i][j+1] - z_sub[i][j]))
            #print(dp)
            # calculate area using trapezium rule
            dA += (h_i[i]
                   - (z_sub[i][j+1] + z_sub[i][j])/2)\
                   *(x_sub[i][j+1] - x_sub[i][j])
            #print('Area =', dA)

        p_i.append(dp)
        A_i.append(dA)

        r_h.append(A_i[i]/p_i[i])  # ratio of area and wetted perimeter
        #print('hydraulic radius =', r_h[i])
        K_i.append(A_i[i]*(1/n_co)*r_h[i]**(2/3)) # conveyance
        Q_i.append(K_i[i]*slope**0.5)             # discharge

    return p_i, A_i, r_h, h_i, K_i, Q_i

def plot_region(xdata, labelx,
                ydata1, labely1,
                ydata2, labely2,
                ydata3, labely3, titlep):
    plt.xlabel(labelx)
    plt.ylabel(labely1)
    plt.title(titlep)
    plt.plot(xdata, ydata1)
    plt.show()

    plt.xlabel(labelx)
    plt.ylabel(labely2)
    plt.title(titlep)
    plt.plot(xdata, ydata2)
    plt.show()

    plt.xlabel(labelx)
    plt.ylabel(labely3)
    plt.title(titlep)
    plt.plot(xdata, ydata3)
    plt.show()

def save_bc(outputfile):
    with open(outputfile, 'w') as f:
        f.write('{:6} {:>2} {:>2} {:>10}\n'.format('#x', 'c', 'q', 'h'))
        for ind_z, (xitem, zitem) in enumerate(zip(xin, zin)):
            panel_x = bisect.bisect(markers, xitem)
            if csa[ind_z] == 0:
                # wall boundary condition
                f.write('{:6.2f} {:>2}\n'.format(xitem, 2))
            elif panel_x == panel[ind_p]:
                # imposed discharge within part-filled panel
                f.write('{:6.2f} {:>2} {:10.6f} {:9.6f}\n'.format(
                    xitem, btype,
                    -csa[ind_z]*panel_target_flow/csa_p[panel_x],
                    h_extra-zitem))
            else:
                # imposed discharge within filled panels
                f.write('{:6.2f} {:>2} {:10.6f} {:9.6f}\n'.format(
                    xitem, btype,
                    -csa[ind_z]*Q_i[panel_x][-1]/csa_p[panel_x],
                    zmax-zitem))

def interp(extra2, max1, min1, max2, min2):
    # use similar triangles to perform linear interpolation
    extra1 = min1 + (max1 - min1)*(extra2 - min2)/(max2 - min2)
    
    return extra1

# read command line argument:
parser = argparse.ArgumentParser(
    description="generate FullSWOF boundary files")
parser.add_argument("location", help="boundary location")
args = parser.parse_args()

if args.location == 'top':
    inputFilename = "boundaryTop.txt"
    outputFilename = "BCTop.txt"
elif args.location == 'bottom':
    inputFilename = "boundaryBottom.txt"
    outputFilename = "BCBottom.txt"
elif args.location == 'left':
    inputFilename = "boundaryLeft.txt"
    outputFilename = "BCLeft.txt"
elif args.location == 'right':
    inputFilename = "boundaryRight.txt"
    outputFilename = "BCRight.txt"

# read boundary definition file:
definition_dict = read_definition(inputFilename)
#for dd in definition_dict:
#    print(definition_dict[dd])
btype       = definition_dict["type"]        # boundary type (1--5)
slope       = abs(definition_dict["slope"])  # slope at top boundary
target_flow = definition_dict["target_flow"] # imposed discharge
plotting    = definition_dict["plotting"]    # enable or disable plotting
n_co        = definition_dict["n_co"]        # Manning's 'n' coefficients
# TODO: use weighted mean 'n' values.  See
# http://help.floodmodeller.com/isis/ISIS/River_Section.htm (Eq. 4)
# Note: weighted mean calculation requires roughness map.
markers     = definition_dict["markers"]     # distances from corner point
panel       = definition_dict["panel"]       # panel fill order
ztol        = definition_dict["ztol"]        # tolerance in overtopping height
numH        = definition_dict["numH"]        # number of height intervals


# print(len(markers))

# with open('./1D_top.txt', "r") as data:
#     xch, ych, zch = np.loadtxt(data, delimiter=' ', unpack=True)

# Fit with polyfit
# m, c = np.polyfit(ych, zch, 1)
# print('gradient =', m, 'intercept =', c)

# read topography:
with open("./topography.txt", "r") as topo:
    xtp, ytp, ztp = np.loadtxt(topo, delimiter=' ', unpack=True)


xmax  = (xtp[0]+xtp[-1])                   # domain extent in x-direction
ymax  = (ytp[0]+ytp[-1])                   # domain extent in y-direction
ncols = int(math.sqrt(len(xtp)*xmax/ymax)) # number of cells in x-direction
nrows = int(len(xtp)/ncols)                # number of cells in y-direction
dX    = xmax/ncols                         # cell size
print('dX =', dX)

#print(ncols, nrows)

# extract slices from height data array.  Note: xyz format uses ncols
# blocks, with nrows lines per block.
if args.location == 'top':
    xin = xtp[nrows-1:len(xtp):nrows]
    yin = ytp[nrows-1:len(xtp):nrows]
    zin = ztp[nrows-1:len(xtp):nrows]
elif args.location == 'bottom':
    xin = xtp[0:len(xtp):nrows]
    yin = ytp[0:len(xtp):nrows]
    zin = ztp[0:len(xtp):nrows]
elif args.location == 'left':
    xin = xtp[:nrows]
    yin = ytp[:nrows]
    zin = ztp[:nrows]
elif args.location == 'right':
    xin = xtp[nrows*(ncols-1):]
    yin = ytp[nrows*(ncols-1):]
    zin = ztp[nrows*(ncols-1):]
    

# print(xin)

num_panels = len(panel) # number of panels across boundary

# convert marker co-ordinates to array indices:
marker_ind = [0]
for i in range(len(markers)):
    marker_ind.append(int(markers[i]/dX))
if args.location == 'left' or args.location == 'right':
    marker_ind.append(nrows)
elif args.location == 'top' or args.location == 'bottom':
    marker_ind.append(ncols)


# print(marker_ind)

xregion = []
zregion = []
zmin = []
for p in range(num_panels):
    # identify regions:
    xregion.append(xin[marker_ind[p]:marker_ind[p+1]])
    zregion.append(zin[marker_ind[p]:marker_ind[p+1]])
    # identify minimum heights within each panel:
    zmin.append(zregion[p].min())

# xregion_west = xin[100:281]
# zregion_west = zin[100:281]

# xregion_east = xin[300:408]
# zregion_east = zin[300:408]

# print(zregion)
# print(xin[12:20])

print('zmin =', zmin)

# channel overtopping height (minimum of left bank and right bank heights):
zmax = min(zregion[panel[0]][0], zregion[panel[0]][-1]) - ztol

print('zmax =', zmax)

#print(h_i)



p_i = [[] for _ in range(num_panels)]
A_i = [[] for _ in range(num_panels)]
r_h = [[] for _ in range(num_panels)]
h_i = [[] for _ in range(num_panels)]
K_i = [[] for _ in range(num_panels)]
Q_i = [[] for _ in range(num_panels)]
for p in range(num_panels):
    if p == panel[0]-1 and zregion[p][-1] < zmax:
        # ensure end node in region to the left of channel is dry:
        xregion[p] = np.append(xregion[p], xin[marker_ind[p]])
        zregion[p] = np.append(zregion[p], zin[marker_ind[p]])
    if p == panel[0]+1 and zregion[p][0] < zmax:
        # ensure start node in region to the right of channel is dry:
        xregion[p] = np.insert(xregion[p], 0, xin[marker_ind[p]-1])
        zregion[p] = np.insert(zregion[p], 0, zin[marker_ind[p]-1])
    if zmax > zmin[p]:
        p_i[p], A_i[p], r_h[p], h_i[p], K_i[p], Q_i[p] = conveyance(
            numH,
            n_co[p],
            xregion[p],
            zregion[p],
            zmin[p],
            zmax)
        if plotting:
            plot_region(
                h_i[p]-zmin[p], 'maximum depth / m',
                r_h[p], 'hydraulic radius / m',
                K_i[p], r'conveyance / $m^3/s$',
                Q_i[p], r'discharge / $m^3/s$',
                'Panel {}'.format(p))
    else:
        p_i[p], A_i[p], r_h[p], h_i[p], K_i[p], Q_i[p] = [
            [0] * numH for _ in range(6)]

# sort list of discharge lists according to panel fill order:
sortedQ = [Q_i[i] for i in panel]
# create cumulative discharge list:
total_flow = np.cumsum([item[-1] for item in sortedQ])
print('total_flow = ', total_flow)
# target_flow_west = target_flow - Q_i[-1] - Q_i_east[-1]
# calculate velocity: note dependence on hydraulic radius
velocity_channel = Q_i[panel[0]][-1]/A_i[panel[0]][-1]
# velocity_east    = Q_i_east[-1]/A_i_east[-1]

# print(target_flow_west)
# find part-filled panel:
if total_flow[-1] > target_flow:
    ind_p = bisect.bisect(total_flow, target_flow)
else:
    print('Error: imposed discharge is higher than total capacity of panels.')
    sys.exit()

print('index of part-filled panel:', ind_p)

# calculate target flow in part-filled panel:
if ind_p == 0:
    panel_target_flow = target_flow
else:
    panel_target_flow = target_flow - total_flow[ind_p-1]

# find insertion point for target flow value:
ind_q = bisect.bisect(Q_i[panel[ind_p]], panel_target_flow)

print('insertion point =', ind_q)

# find height at target flow by linear interpolation
h_extra = interp(
    panel_target_flow,
    h_i[panel[ind_p]][ind_q],
    h_i[panel[ind_p]][ind_q-1],
    Q_i[panel[ind_p]][ind_q],
    Q_i[panel[ind_p]][ind_q-1])

print('heights:', h_i[panel[ind_p]][ind_q-1], h_extra, h_i[panel[ind_p]][ind_q])

# find area at target flow by linear interpolation
A_extra = interp(
    h_extra,
    A_i[panel[ind_p]][ind_q],
    A_i[panel[ind_p]][ind_q-1],
    h_i[panel[ind_p]][ind_q],
    h_i[panel[ind_p]][ind_q-1])
    
print('hydraulic radii:', r_h[panel[ind_p]][ind_q-1], r_h[panel[ind_p]][ind_q])

velocity_panel    = panel_target_flow/A_extra
print('velocities:', velocity_channel, velocity_panel)

csa = np.zeros(len(xin))             # cross-sectional area of element
csa_p = np.zeros(num_panels)         # cross-sectional area of panel
for i, p in enumerate(panel):
    if i < ind_p:
        # panels are filled
        area_sum = 0
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = max(0, (zmax - zin[m])*dX)
            area_sum += csa[m]
        csa_p[p] = area_sum
    elif i == ind_p:
        # panel is part-filled
        area_sum = 0
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = max(0, (h_extra - zin[m])*dX)
            area_sum += csa[m]
        csa_p[p] = area_sum
    else:
        # panel is empty
        for m in range(marker_ind[p], marker_ind[p+1]):
            csa[m] = 0
        csa_p[p] = 0


#print('csa_p[0] = {} csa_p[1] = {}'.format(csa_p[0], csa_p[1]))
#print('A_i_west = {} A_i = {} A_i_east = {}'.format(A_extra, A_i[-1], A_i_east[-1]))


save_bc(outputFilename)