1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# run within virtual environment (uses Python 3 syntax)
import argparse
import os
import re
from array import array
from collections import Counter
from subprocess import check_output
def meshFile(param):
global base
base, ext = os.path.splitext(param)
if ext.lower() != '.pyfrm':
raise argparse.ArgumentTypeError('Mesh file must have a .pyfrm extension')
return param
def writeHeader(xdmfFile):
"write XDMF header"
xdmfFile.write('<?xml version="1.0" ?>\n')
xdmfFile.write('<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>\n')
xdmfFile.write('<Xdmf xmlns:xi="http://www.w3.org/2003/XInclude" Version="2.2">\n')
xdmfFile.write(' <Domain>\n')
return
def writeTopology(xdmfFile, tType, nCells, connFile):
"write Topology element"
xdmfFile.write(' <Topology TopologyType="{}" NumberOfElements="{}">\n'.format(tType, nCells))
xdmfFile.write(' <xi:include href="{}"/>\n'.format(connFile))
xdmfFile.write(' </Topology>\n')
return
def writeGeometry(xdmfFile, nDims, nCells, nodeArray, pyfrm, dataset):
"write Geometry element"
nVerts = len(nodeArray)
if nDims == 2:
xdmfFile.write(' <Geometry GeometryType="X_Y">\n') # co-ordinates in separate arrays
else:
xdmfFile.write(' <Geometry GeometryType="X_Y_Z">\n') # co-ordinates in separate arrays
for coord in range(nDims):
xdmfFile.write(' <DataItem ItemType="Function" Dimensions="{}"\n'.format(nVerts*nCells)) # 1D-array
xdmfFile.write(' Function="JOIN({})">\n'.format(' ; '.join("$" + str(k) for k in range(nVerts))))
writeHyperSlab(xdmfFile, coord, nDims, nCells, nodeArray, pyfrm, dataset)
xdmfFile.write(' </DataItem>\n')
xdmfFile.write(' </Geometry>\n')
return
def writeHyperSlab(xdmfFile, coord, nDims, nCells, nodeArray, pyfrm, dataset):
"write HyperSlab element"
nVerts = len(nodeArray)
for vert in nodeArray:
xdmfFile.write(' <DataItem ItemType="HyperSlab"\n')
xdmfFile.write(' Dimensions="{} 1 1"\n'.format(nCells))
xdmfFile.write(' Type="HyperSlab">\n')
xdmfFile.write(' <DataItem\n') # start, stride and count of hyperslab region
xdmfFile.write(' Dimensions="3 3"\n')
xdmfFile.write(' Format="XML">\n')
xdmfFile.write(' {:<3} 0 {}\n'.format(vert, coord)) # select vertex and co-ordinate (format is vertex, cell, co-ordinate)
xdmfFile.write(' 1 1 1\n') # select every cell, for this vertex and co-ordinate
xdmfFile.write(' 1 {} 1\n'.format(nCells)) # loop over cells
xdmfFile.write(' </DataItem>\n')
xdmfFile.write(' <DataItem\n')
xdmfFile.write(' Name="Points" \n')
xdmfFile.write(' Dimensions="{} {} {}"\n'.format(nVerts, nCells, nDims))
xdmfFile.write(' Format="HDF">\n')
xdmfFile.write(' {}:/{}\n'.format(pyfrm, dataset))
xdmfFile.write(' </DataItem>\n')
xdmfFile.write(' </DataItem>\n')
return
def writeAttribute(xdmfFile, tag):
"write Attribute element"
xdmfFile.write(' <Attribute Name="Partition" Center="Grid">\n')
xdmfFile.write(' <DataItem\n')
xdmfFile.write(' Dimensions="1"\n')
xdmfFile.write(' Format="XML">\n')
xdmfFile.write(' {}\n'.format(tag)) # tag with partition number
xdmfFile.write(' </DataItem>\n')
xdmfFile.write(' </Attribute>\n')
return
def writeConnectivities(connFile, nCells, nVerts):
"write connectivities to xml file"
cf = open(connFile, 'w')
cf.write('<DataItem DataType="Int"\n')
cf.write(' Dimensions="{} {}"\n'.format(nCells, nVerts))
cf.write(' Format="XML">\n')
for i in range (0, nCells):
cf.write(' ')
for j in range(nVerts):
cf.write(' ' + repr(j*nCells+i).ljust(1))
cf.write('\n')
cf.write('</DataItem>\n')
cf.close()
print('connectivities written to ' + connFile)
return
def writeFooter(xdmfFile):
"write XDMF footer"
xdmfFile.write(' </Domain>\n')
xdmfFile.write('</Xdmf>\n')
return
def readH5lsOutput(os_output):
"read output from 'h5ls' command"
tet4, tet10, tet20, tet35, tet56, tet84 = ({} for i in range(6)) # tet cells
pri6, pri18, pri40, pri75, pri126, pri196 = ({} for i in range(6)) # pri cells
pyr5, pyr14, pyr30, pyr55, pyr91, pyr140 = ({} for i in range(6)) # pyr cells
hex8, hex27, hex64, hex125, hex216 = ({} for i in range(5)) # hex cells
tri3, tri6, tri10, tri15, tri21 = ({} for i in range(5)) # tri cells
quad4, quad9, quad16, quad25, quad36 = ({} for i in range(5)) # quad cells
for line in os_output.splitlines():
spt = re.search('spt', line.decode()) # restrict to 'spt' arrays
if spt:
chunk = line.decode().split()
partno = int(re.search('\d+', chunk[0]).group())
nnodes = int(re.search('(\d+),', line.decode()).group(1))
ncells = int(re.search(' (\d+),', line.decode()).group(1))
if re.search('quad', line.decode()): # check whether cell is quadrangular
if nnodes == 4:
quad4[partno] = ncells
elif nnodes == 9:
quad9[partno] = ncells
elif nnodes == 16:
quad16[partno] = ncells
elif nnodes == 25:
quad25[partno] = ncells
elif nnodes == 36:
quad36[partno] = ncells
else:
print("unknown cell order")
elif re.search('tri', line.decode()): # check whether cell is triangular
if nnodes == 3:
tri3[partno] = ncells
elif nnodes == 6:
tri6[partno] = ncells
elif nnodes == 10:
tri10[partno] = ncells
elif nnodes == 15:
tri15[partno] = ncells
elif nnodes == 21:
tri21[partno] = ncells
else:
print("unknown cell order")
elif re.search('hex', line.decode()): # check whether cell is hexahedral
if nnodes == 8:
hex8[partno] = ncells
elif nnodes == 27:
hex27[partno] = ncells
elif nnodes == 64:
hex64[partno] = ncells
elif nnodes == 125:
hex125[partno] = ncells
elif nnodes == 216:
hex216[partno] = ncells
else:
print("unknown cell order")
else:
print("unknown cell type")
break
return (tet4, tet10, tet20, tet35, tet56, tet84,
pri6, pri18, pri40, pri75, pri126, pri196,
pyr5, pyr14, pyr30, pyr55, pyr91, pyr140,
hex8, hex27, hex64, hex125, hex216,
tri3, tri6, tri10, tri15, tri21,
quad4, quad9, quad16, quad25, quad36)
# read command line arguments
parser = argparse.ArgumentParser(description="extract connectivities from mesh file")
parser.add_argument("mesh", help="mesh file (.pyfrm)", type=meshFile)
args = parser.parse_args()
# use 'h5ls' command to provide array dimensions
h5lsOutput = check_output(["h5ls", args.mesh])
(ntet4, ntet10, ntet20, ntet35, ntet56, ntet84,
npri6, npri18, npri40, npri75, npri126, npri196,
npyr5, npyr14, npyr30, npyr55, npyr91, npyr140,
nhex8, nhex27, nhex64, nhex125, nhex216,
ntri3, ntri6, ntri10, ntri15, ntri21,
nquad4, nquad9, nquad16, nquad25, nquad36) = readH5lsOutput(h5lsOutput)
# cell types
firstOrderCellType = ['tet', 'tet', 'tet', 'tet', 'tet', 'tet',
'pri', 'pri', 'pri', 'pri', 'pri', 'pri',
'pyr', 'pyr', 'pyr', 'pyr', 'pyr', 'pyr',
'hex', 'hex', 'hex', 'hex', 'hex',
'tri', 'tri', 'tri', 'tri', 'tri',
'quad', 'quad', 'quad', 'quad', 'quad']
ndims = {'quad': 2, 'tri': 2, 'hex': 3, 'pyr': 3, 'pri': 3, 'tet':3}
xdmfTopologyType = {'quad': 'Quadrilateral', 'tri': 'Triangle', 'hex': 'Hexahedron',
'pyr' : 'Pyramid', 'pri': 'Wedge', 'tet': 'Tetrahedron'}
# node identification (see pyfr/readers/nodemaps.py): reduce high-order cells to first order
nodeIDs = {}
nodeIDs[29] = [0, 2, 8, 6] # quad9
nodeIDs[28] = [0, 1, 3, 2] # quad4
nodeIDs[23] = [0, 1, 2] # tri3
nodeIDs[19] = [0, 2, 8, 6, 18, 20, 26, 24] # hex27
nodeIDs[18] = [0, 1, 3, 2, 4, 5, 7, 6] # hex8
# sort datasets
hex8Keys = list(nhex8.keys()) # keys are partition numbers
hex27Keys = list(nhex27.keys())
quad4Keys = list(nquad4.keys())
tri3Keys = list(ntri3.keys())
allKeys = quad4Keys + tri3Keys + hex8Keys + hex27Keys # concatenate keys
numTypes = Counter(allKeys) # number of types present in each partition
partKeys = list(numTypes.keys()) # partition keys
partitions = [ntet4, ntet10, ntet20, ntet35, ntet56, ntet84,
npri6, npri18, npri40, npri75, npri126, npri196,
npyr5, npyr14, npyr30, npyr55, npyr91, npyr140,
nhex8, nhex27, nhex64, nhex125, nhex216,
ntri3, ntri6, ntri10, ntri15, ntri21,
nquad4, nquad9, nquad16, nquad25, nquad36] # list of cell dictionaries
numCellTypes = len(partitions)
if partKeys:
# write files
g = open(os.path.join(base + '.xdmf'), 'w')
writeHeader(g)
for part in partKeys:
if numTypes[part] > 1: # check whether partition contain multiple cell types
g.write(' <Grid Name="Partition{}" GridType="Collection">\n'.format(part))
else:
g.write(' <Grid Name="Partition{}" GridType="Uniform">\n'.format(part))
for cellType in range(numCellTypes):
if part in partitions[cellType]: # check whether these cells exist in this partition
xfname = os.path.join('con_' + firstOrderCellType[cellType] + '_p' + str(part) + '.xml')
dname = os.path.join('spt_' + firstOrderCellType[cellType] + '_p' + str(part))
if numTypes[part] > 1:
g.write(' <Grid Name="cellType{}" GridType="Uniform">\n'.format(cellType))
writeTopology(g, xdmfTopologyType[firstOrderCellType[cellType]],
partitions[cellType][part], xfname)
writeGeometry(g, ndims[firstOrderCellType[cellType]],
partitions[cellType][part],
nodeIDs[cellType],
args.mesh, dname)
if numTypes[part] > 1:
g.write(' </Grid>\n')
# connectivities file
writeConnectivities(xfname, partitions[cellType][part],
len(nodeIDs[cellType]))
writeAttribute(g, part)
g.write(' </Grid>\n')
writeFooter(g)
g.close()
|