diff options
author | Paul Garlick <pgarlick@tourbillion-technology.com> | 2019-10-24 12:28:57 +0100 |
---|---|---|
committer | Paul Garlick <pgarlick@tourbillion-technology.com> | 2019-10-24 12:28:57 +0100 |
commit | cd7776e6cf2ab24d1e0458f1f233e71b0cf0d289 (patch) | |
tree | d900d2ac942f5f58f360d148ed9dfc6695fbce9f /makeBoundary.py | |
parent | 4b4dd2bace97e3779e4e0609db71a8901fc62f60 (diff) | |
download | fullSWOF-utils-cd7776e6cf2ab24d1e0458f1f233e71b0cf0d289.tar.gz |
add labels to print statements.
Diffstat (limited to 'makeBoundary.py')
-rwxr-xr-x | makeBoundary.py | 17 |
1 files changed, 9 insertions, 8 deletions
diff --git a/makeBoundary.py b/makeBoundary.py index 764952c..78fd532 100755 --- a/makeBoundary.py +++ b/makeBoundary.py @@ -174,7 +174,7 @@ elif location == 'right': outputFilename = "BCRight.txt" -print(xin) +# print(xin) num_panels = len(panel) # number of panels across boundary @@ -209,11 +209,12 @@ for p in range(num_panels): # print(zregion) # print(xin[12:20]) -print(zmin[1]) +print('zmin[3] =', zmin[3]) # channel overtopping height (minimum of left bank and right bank heights): zmax = min(zregion[panel[0]][0], zregion[panel[0]][-1]) - ztol +print('zmax =', zmax) #print(h_i) @@ -248,7 +249,7 @@ for p in range(num_panels): sortedQ = [Q_i[i] for i in panel] # create cumulative discharge list: total_flow = np.cumsum([item[-1] for item in sortedQ]) -print(total_flow) +print('total_flow = ', total_flow) # target_flow_west = target_flow - Q_i[-1] - Q_i_east[-1] # calculate velocity: note dependence on hydraulic radius velocity_channel = Q_i[panel[0]][-1]/A_i[panel[0]][-1] @@ -257,24 +258,24 @@ velocity_channel = Q_i[panel[0]][-1]/A_i[panel[0]][-1] # print(target_flow_west) # find part-filled panel: ind_p = bisect.bisect(total_flow, target_flow) -print(ind_p) +print('index of part-filled panel:', ind_p) # calculate target flow in part-filled panel: panel_target_flow = target_flow - total_flow[ind_p-1] # find insertion point for target flow value: ind_q = bisect.bisect(Q_i[panel[ind_p]], panel_target_flow) -print(ind_q) +print('insertion point =', ind_q) # find height at target flow by linear interpolation h_extra = h_i[panel[ind_p]][ind_q-1] + (h_i[panel[ind_p]][ind_q]-h_i[panel[ind_p]][ind_q-1])*(panel_target_flow-Q_i[panel[ind_p]][ind_q-1])/(Q_i[panel[ind_p]][ind_q]-Q_i[panel[ind_p]][ind_q-1]) -print(h_i[panel[ind_p]][ind_q-1], h_extra, h_i[panel[ind_p]][ind_q]) +print('heights:', h_i[panel[ind_p]][ind_q-1], h_extra, h_i[panel[ind_p]][ind_q]) # find area at target flow by linear interpolation A_extra = A_i[panel[ind_p]][ind_q-1] + (h_extra-h_i[panel[ind_p]][ind_q-1])*(A_i[panel[ind_p]][ind_q]-A_i[panel[ind_p]][ind_q-1])/(h_i[panel[ind_p]][ind_q]-h_i[panel[ind_p]][ind_q-1]) -print(r_h[panel[ind_p]][ind_q-1], r_h[panel[ind_p]][ind_q]) +print('hydraulic radii:', r_h[panel[ind_p]][ind_q-1], r_h[panel[ind_p]][ind_q]) velocity_panel = panel_target_flow/A_extra -print(velocity_channel, velocity_panel) +print('velocities:', velocity_channel, velocity_panel) csa = np.zeros(len(xin)) # cross-sectional area of element csa_p = np.zeros(num_panels) # cross-sectional area of panel |